$R_{\rm int} = 0.071$

 $0.40 \times 0.30 \times 0.30 \text{ mm}$

16985 measured reflections 3294 independent reflections 2710 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hexakis(1-methyl-1*H*-imidazole- κN^3)cobalt(II) dibromide dihydrate

Rufu Yao

Department of Chemistry, Hefei Teachers College, Hefei, Anhui 230061, People's Republic of China

Correspondence e-mail: rufuyao@sian.com

Received 4 December 2008; accepted 16 December 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.037; wR factor = 0.103; data-to-parameter ratio = 17.6.

The asymmetric unit of the title compound, $[Co(C_4H_6N_2)_6]$ -Br₂·2H₂O, contains one-half of the centrosymmetric cation, one Br atom and one water molecule. The Co^{II} atom, lying on an inversion center, has a distorted octahedral geometry, defined by six N atoms from six 1-methylimidazole ligands. In the crystal structure, intra- and intermolecular O-H···Br hydrogen bonds link pairs of uncoordinated water molecules and bromide anions.

Related literature

For general background, see: Lin *et al.* (2007); Rogers & Seddon (2003); Xie *et al.* (2008). For a related structure, see: Baca *et al.* (2005).

Experimental

Crystal data $[Co(C_4H_6N_2)_6]Br_2 \cdot 2H_2O$ $M_r = 747.41$

Monoclinic, $P2_1/c$

a = 8.182 (2) Å

b = 13.573 (2) Å

c = 16.2340 (19) Å β = 111.12 (4)° V = 1681.8 (7) Å³ Z = 2 Mo K α radiation $\mu = 2.93 \text{ mm}^{-1}$ T = 298 (2) K

Data collection

Bruker SMART CCD area-detector	
diffractometer	
Absorption correction: multi-scan	
(SADABS; Bruker, 2001)	
$T_{\min} = 0.363, T_{\max} = 0.416$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ 187 parameters $wR(F^2) = 0.103$ H-atom parameters constrainedS = 1.04 $\Delta \rho_{max} = 0.86$ e Å $^{-3}$ 3294 reflections $\Delta \rho_{min} = -0.36$ e Å $^{-3}$

Table 1

Selected geometric parameters (Å, °).

Co1-N3	2.174 (2)	Co1-N1	2.207 (2)
Co1-N5	2.182 (2)		
N3 ⁱ -Co1-N3	180.0	N3-Co1-N1	92.48 (8)
N3-Co1-N5	88.07 (8)	N5-Co1-N1	89.43 (8)
N3-Co1-N5 ⁱ	91.93 (8)	N5 ⁱ -Co1-N1	90.57 (8)
N5-Co1-N5 ⁱ	180.0	N1 ⁱ -Co1-N1	180.00 (11)
N3 ⁱ -Co1-N1	87.52 (8)		

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Table 2			
Hydrogen-bond	geometry	/ (Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1W−H1WA…Br1 ⁱⁱ	0.85	2.57	3.371 (3)	157
$O1W - H1WB \cdots Br1$	0.86	2.51	3.338 (3)	164

Symmetry code: (ii) -x + 1, -y + 2, -z + 1.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the National Natural Science Foundation of China (grant No. 20871039).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2594).

References

- Baca, S. G., Filippova, I. G., Franz, C, P., Ambrus, C., Gdaniec, M., Stoeckli-Evans, H., Simonov, Y. A., Gherco, O. A., Bejan, T., Gerbeleu, N. & Decurtins, S. (2005). *Inorg. Chim. Acta*, 358, 1762–1770.
- Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Lin, Z. J., Wragg, D. S., Warren, J. E. & Morris, R. E. (2007). J. Am. Chem. Soc. 129, 10334–10335.
- Rogers, R. D. & Seddon, K. R. (2003). Science, 302, 792-793.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Xie, Z. L., Feng, M. L., Li, J. R. & Huang, X. Y. (2008). *Inorg. Chem. Commun.* **11**, 1143–1146.

supplementary materials

Acta Cryst. (2009). E65, m149 [doi:10.1107/S1600536808042906]

Hexakis(1-methyl-1*H*-imidazole- κN^3)cobalt(II) dibromide dihydrate

R. Yao

Comment

Ionothermal synthesis of novel organic-inorganic hybrid materials are not accessible by traditional hydro- or solvothermal reactions (Rogers & Seddon, 2003, Xie *et al.*, 2008, Lin *et al.*, 2007). We report herein the crystal structure of the title compound.

The asymmetric unit of the title compound (Fig. 1) contains one-half of the centrosymmetric cation, one Br atom and one water molecule. The Co^{II} atom lying on the inversion center of the centrosymmetric cation has a distorted octahedral geometry (Table 1). It is coordinated by six N atoms from six 1-methylimidazole ligands, where N3, N3ⁱ, N5 and N5ⁱ atoms comprise the equatorial plane, and the other two N atoms, N1 and N1ⁱ, occupy the axial positions [symmetry code: (i) 1 - x, 2 - y, 1 - z]. The Co-N bonds [average value = 2.1877 (2) Å] are longer than the Ni-N bonds [average value = 2.065 Å] in the reported Ni complex with the same ligand (Baca *et al.*, 2005).

In the crystal structure, intra- and intermolecular O-H···Br hydrogen bonds (Table 2) link the pairs of uncoordinated water and bromide anions (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

 $C_O(NO_3)_2.6H_2O(0.9 \text{ g})$ and N-methyl imidazole (0.5 g) were placed in a Teflon-line stainless-steel autoclave (25 ml) mixed with 1-ethyl-3-methyl- imidazolium (EMIBr)(1.0 g). The mixtures were heated at 423 K for 3 d, followed by cooling slowly to room temperature. The red block crystals were collected.

Refinement

H atoms were positioned geometrically, with O-H = 0.8544 and 0.8553 Å (for H₂O) and C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C,O)$, where x = 1.2 for aromatic H and x = 1.5 for all other H atoms.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at 30% probability level [symmetry code: (i) 1 - x, 2 - y, 1 - z].

Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Hexakis(1-methyl-1*H*-imidazole- κN^3)cobalt(II) dibromide dihydrate

Crystal data	
$[Co(C_4H_6N_2)_6]Br_2 \cdot 2H_2O$	$F_{000} = 762$
$M_r = 747.41$	$D_{\rm x} = 1.47 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 7560 reflections
a = 8.182 (2) Å	$\theta = 2.5 - 27.1^{\circ}$
<i>b</i> = 13.573 (2) Å	$\mu = 2.93 \text{ mm}^{-1}$
c = 16.2340 (19) Å	T = 298 (2) K
$\beta = 111.12 \ (4)^{\circ}$	Block, red
V = 1681.8 (7) Å ³	$0.40 \times 0.30 \times 0.30 \text{ mm}$
Z = 2	

Data collection

Bruker SMART CCD area-detector diffractometer	3294 independent reflections
Radiation source: fine-focus sealed tube	2710 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.071$
T = 298(2) K	$\theta_{\text{max}} = 26.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2001)	$h = -9 \rightarrow 10$
$T_{\min} = 0.363, T_{\max} = 0.416$	$k = -15 \rightarrow 16$
16985 measured reflections	$l = -20 \rightarrow 20$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H-atom parameters constrained
$wR(F^2) = 0.103$	$w = 1/[\sigma^2(F_0^2) + (0.0649P)^2 + 0.2015P]$ where $P = (F_0^2 + 2F_c^2)/3$

<i>S</i> = 1.04	$(\Delta/\sigma)_{max} = 0.001$
3294 reflections	$\Delta \rho_{max} = 0.86 \text{ e } \text{\AA}^{-3}$
187 parameters	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Col	0.5000	0.5000	0.5000	0.03601 (15)
Br1	0.78110 (4)	0.87845 (2)	0.56859 (2)	0.05972 (14)
O1W	0.4155 (4)	0.9171 (2)	0.3940 (2)	0.1105 (11)
H1WA	0.3888	0.9772	0.3983	0.166*
H1WB	0.4947	0.9012	0.4433	0.166*
N1	0.3436 (3)	0.62856 (14)	0.51072 (14)	0.0415 (5)
N2	0.2626 (3)	0.77351 (16)	0.54359 (16)	0.0490 (5)
N3	0.7232 (3)	0.54470 (15)	0.61490 (13)	0.0419 (5)
N4	0.9664 (3)	0.61811 (16)	0.70086 (15)	0.0504 (6)
N5	0.4033 (3)	0.41844 (16)	0.58900 (13)	0.0433 (5)
N6	0.3497 (3)	0.30035 (18)	0.66980 (15)	0.0539 (6)
C1	0.3966 (3)	0.71343 (19)	0.54940 (17)	0.0449 (6)
H1A	0.5138	0.7302	0.5777	0.054*
C2	0.1629 (4)	0.6342 (2)	0.4783 (2)	0.0543 (7)
H2A	0.0873	0.5845	0.4474	0.065*
C3	0.1130 (4)	0.7236 (2)	0.4986 (2)	0.0567 (7)
H3A	-0.0012	0.7463	0.4845	0.068*
C4	0.2759 (5)	0.8748 (2)	0.5786 (3)	0.0792 (12)
H4A	0.3971	0.8920	0.6075	0.119*
H4B	0.2173	0.8785	0.6202	0.119*
H4C	0.2220	0.9198	0.5309	0.119*
C5	0.8328 (3)	0.61851 (19)	0.62204 (17)	0.0444 (6)
H5A	0.8195	0.6651	0.5781	0.053*
C6	0.7915 (4)	0.4943 (2)	0.69380 (18)	0.0521 (7)
H6A	0.7419	0.4386	0.7085	0.063*
C7	0.9419 (4)	0.5382 (2)	0.74685 (19)	0.0564 (7)
H7A	1.0137	0.5181	0.8030	0.068*

supplementary materials

C8	1.1066 (5)	0.6909 (3)	0.7314 (3)	0.0799 (10)
H8A	1.0926	0.7386	0.6857	0.120*
H8B	1.2178	0.6586	0.7457	0.120*
H8C	1.1017	0.7234	0.7830	0.120*
C9	0.4120 (4)	0.3232 (2)	0.60596 (17)	0.0480 (6)
H9A	0.4561	0.2770	0.5771	0.058*
C10	0.3301 (4)	0.4577 (2)	0.6465 (2)	0.0626 (8)
H10A	0.3063	0.5242	0.6502	0.075*
C11	0.2980 (5)	0.3862 (2)	0.6964 (2)	0.0663 (9)
H11A	0.2502	0.3940	0.7400	0.080*
C12	0.3336 (6)	0.2008 (3)	0.7011 (2)	0.0862 (12)
H12A	0.3805	0.1539	0.6713	0.129*
H12B	0.2123	0.1863	0.6890	0.129*
H12C	0.3973	0.1970	0.7636	0.129*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	0.0387 (3)	0.0319 (3)	0.0416 (2)	0.00008 (18)	0.0197 (2)	0.00050 (18)
Br1	0.0506 (2)	0.0458 (2)	0.0787 (2)	-0.00077 (12)	0.01838 (17)	-0.01020 (13)
O1W	0.099 (2)	0.096 (2)	0.109 (2)	0.0179 (17)	0.0042 (18)	-0.0335 (18)
N1	0.0405 (12)	0.0390 (12)	0.0502 (11)	0.0004 (9)	0.0227 (10)	-0.0009 (9)
N2	0.0508 (14)	0.0370 (12)	0.0683 (13)	0.0033 (9)	0.0325 (11)	-0.0024 (10)
N3	0.0450 (12)	0.0370 (11)	0.0444 (11)	0.0026 (9)	0.0168 (9)	0.0005 (9)
N4	0.0388 (12)	0.0544 (14)	0.0536 (13)	0.0033 (10)	0.0112 (11)	0.0010 (10)
N5	0.0483 (13)	0.0421 (12)	0.0465 (11)	-0.0038 (10)	0.0255 (10)	-0.0006 (9)
N6	0.0603 (15)	0.0592 (15)	0.0490 (12)	-0.0095 (12)	0.0278 (11)	0.0090 (11)
C1	0.0404 (14)	0.0441 (14)	0.0560 (14)	0.0005 (11)	0.0244 (12)	-0.0027 (12)
C2	0.0385 (15)	0.0564 (17)	0.0677 (17)	0.0003 (12)	0.0185 (13)	-0.0103 (14)
C3	0.0411 (15)	0.0606 (18)	0.0697 (17)	0.0099 (13)	0.0217 (13)	-0.0048 (14)
C4	0.083 (3)	0.0403 (18)	0.130 (3)	0.0009 (15)	0.057 (3)	-0.0167 (17)
C5	0.0403 (14)	0.0454 (15)	0.0463 (14)	0.0014 (11)	0.0143 (12)	0.0047 (11)
C6	0.0621 (18)	0.0408 (15)	0.0522 (15)	0.0038 (13)	0.0191 (14)	0.0072 (12)
C7	0.0588 (19)	0.0551 (17)	0.0480 (15)	0.0161 (14)	0.0104 (14)	0.0064 (13)
C8	0.056 (2)	0.083 (3)	0.082 (2)	-0.0173 (18)	0.0011 (17)	-0.0009 (19)
C9	0.0593 (17)	0.0474 (16)	0.0450 (13)	-0.0076 (12)	0.0284 (12)	0.0002 (11)
C10	0.076 (2)	0.0598 (18)	0.0685 (18)	0.0081 (16)	0.0465 (17)	0.0004 (15)
C11	0.074 (2)	0.080 (2)	0.0643 (18)	0.0034 (17)	0.0493 (17)	0.0025 (16)
C12	0.121 (3)	0.071 (2)	0.082 (2)	-0.017 (2)	0.056 (2)	0.0216 (19)
Geometric para	meters (Å, °)					

Co1—N3 ¹	2.174 (2)	N6—C12	1.466 (4)
Co1—N3	2.174 (2)	C1—H1A	0.9300
Co1—N5	2.182 (2)	C2—C3	1.359 (4)
Co1—N5 ⁱ	2.182 (2)	C2—H2A	0.9300
Co1—N1 ⁱ	2.207 (2)	С3—НЗА	0.9300
Co1—N1	2.207 (2)	C4—H4A	0.9600

O1W—H1WA	0.8544	C4—H4B	0.9600
O1W—H1WB	0.8553	C4—H4C	0.9600
N1—C1	1.309 (3)	С5—Н5А	0.9300
N1—C2	1.381 (4)	C6—C7	1.359 (4)
N2—C1	1.342 (3)	С6—Н6А	0.9300
N2—C3	1.359 (4)	С7—Н7А	0.9300
N2—C4	1.477 (4)	C8—H8A	0.9600
N3—C5	1.322 (3)	C8—H8B	0.9600
N3—C6	1.380 (3)	C8—H8C	0.9600
N4—C5	1.351 (3)	С9—Н9А	0.9300
N4—C7	1.372 (4)	C10-C11	1.349 (4)
N4—C8	1.458 (4)	C10—H10A	0.9300
N5—C9	1.319 (4)	C11—H11A	0.9300
N5—C10	1.384 (3)	C12—H12A	0.9600
N6—C9	1.346 (3)	C12—H12B	0.9600
N6—C11	1.362 (4)	C12—H12C	0.9600
N3 ⁱ —Co1—N3	180.0	N2—C3—C2	106.5 (2)
N3 ⁱ —Co1—N5	91.93 (8)	N2—C3—H3A	126.8
N3—Co1—N5	88.07 (8)	С2—С3—НЗА	126.8
N3 ⁱ —Co1—N5 ⁱ	88.07 (8)	N2—C4—H4A	109.5
N3—Co1—N5 ⁱ	91.93 (8)	N2—C4—H4B	109.5
N5—Co1—N5 ⁱ	180.0	H4A—C4—H4B	109.5
N3 ⁱ —Co1—N1 ⁱ	92.48 (8)	N2—C4—H4C	109.5
N3—Co1—N1 ⁱ	87.52 (8)	H4A—C4—H4C	109.5
N5—Co1—N1 ⁱ	90.57 (8)	H4B—C4—H4C	109.5
N5 ⁱ —Co1—N1 ⁱ	89.43 (8)	N3—C5—N4	111.9 (2)
N3 ⁱ —Co1—N1	87.52 (8)	N3—C5—H5A	124.1
N3—Co1—N1	92.48 (8)	N4—C5—H5A	124.1
N5—Co1—N1	89.43 (8)	C7—C6—N3	110.1 (3)
N5 ⁱ —Co1—N1	90.57 (8)	С7—С6—Н6А	125.0
N1 ⁱ —Co1—N1	180.00 (11)	N3—C6—H6A	125.0
H1WA—O1W—H1WB	107.2	C6—C7—N4	106.2 (2)
C1—N1—C2	105.0 (2)	С6—С7—Н7А	126.9
C1—N1—Co1	129.22 (18)	N4—C7—H7A	126.9
C2—N1—Co1	125.80 (17)	N4—C8—H8A	109.5
C1—N2—C3	106.9 (2)	N4—C8—H8B	109.5
C1—N2—C4	126.4 (2)	H8A—C8—H8B	109.5
C3—N2—C4	126.7 (2)	N4—C8—H8C	109.5
C5—N3—C6	105.0 (2)	H8A—C8—H8C	109.5
C5—N3—Co1	128.35 (17)	H8B—C8—H8C	109.5
C6—N3—Co1	126.31 (18)	N5—C9—N6	112.3 (2)
C5—N4—C7	106.9 (2)	N5—C9—H9A	123.8
C5—N4—C8	126.1 (3)	N6—C9—H9A	123.8
C7—N4—C8	127.0 (3)	C11—C10—N5	110.7 (3)
C9—N5—C10	103.9 (2)	C11—C10—H10A	124.7
C9—N5—Co1	129.10 (17)	N5-C10-H10A	124.7

supplementary materials

C10—N5—Co1	126.8 (2)	C10-C11-N6	106.0 (2)				
C9—N6—C11	107.1 (2)	C10-C11-H11A	127.0				
C9—N6—C12	125.8 (3)	N6—C11—H11A	127.0				
C11—N6—C12	127.0 (2)	N6—C12—H12A	109.5				
N1—C1—N2	112.3 (2)	N6—C12—H12B	109.5				
N1—C1—H1A	123.8	H12A—C12—H12B	109.5				
N2—C1—H1A	123.8	N6—C12—H12C	109.5				
C3—C2—N1	109.4 (3)	H12A—C12—H12C	109.5				
С3—С2—Н2А	125.3	H12B—C12—H12C	109.5				
N1—C2—H2A	125.3						
N3 ⁱ —Co1—N1—C1	-157.5 (2)	C3—N2—C1—N1	0.5 (3)				
N3—Co1—N1—C1	22.5 (2)	C4—N2—C1—N1	-178.9 (3)				
N5-Co1-N1-C1	110.5 (2)	C1—N1—C2—C3	0.3 (3)				
N5 ⁱ —Co1—N1—C1	-69.5 (2)	Co1—N1—C2—C3	178.83 (19)				
N3 ⁱ —Co1—N1—C2	24.3 (2)	C1—N2—C3—C2	-0.3 (3)				
N3—Co1—N1—C2	-155.7 (2)	C4—N2—C3—C2	179.1 (3)				
N5—Co1—N1—C2	-67.7 (2)	N1—C2—C3—N2	0.0 (3)				
N5 ⁱ —Co1—N1—C2	112.3 (2)	C6—N3—C5—N4	-0.1 (3)				
N5—Co1—N3—C5	-161.6 (2)	Co1—N3—C5—N4	-173.74 (17)				
N5 ⁱ —Co1—N3—C5	18.4 (2)	C7—N4—C5—N3	0.7 (3)				
N1 ⁱ —Co1—N3—C5	107.7 (2)	C8—N4—C5—N3	-177.7 (3)				
N1—Co1—N3—C5	-72.3 (2)	C5—N3—C6—C7	-0.5 (3)				
N5—Co1—N3—C6	26.0 (2)	Co1—N3—C6—C7	173.29 (18)				
N5 ⁱ —Co1—N3—C6	-154.0 (2)	N3—C6—C7—N4	0.9 (3)				
N1 ⁱ —Co1—N3—C6	-64.6 (2)	C5—N4—C7—C6	-0.9 (3)				
N1—Co1—N3—C6	115.4 (2)	C8—N4—C7—C6	177.4 (3)				
N3 ⁱ —Co1—N5—C9	78.8 (2)	C10-N5-C9-N6	-0.1 (3)				
N3—Co1—N5—C9	-101.2 (2)	Co1—N5—C9—N6	175.28 (18)				
N1 ⁱ —Co1—N5—C9	-13.7 (2)	C11—N6—C9—N5	-0.3 (3)				
N1—Co1—N5—C9	166.3 (2)	C12—N6—C9—N5	177.0 (3)				
N3 ⁱ —Co1—N5—C10	-106.8 (2)	C9—N5—C10—C11	0.4 (4)				
N3—Co1—N5—C10	73.2 (2)	Co1—N5—C10—C11	-175.1 (2)				
N1 ⁱ —Co1—N5—C10	160.7 (2)	N5-C10-C11-N6	-0.6 (4)				
N1—Co1—N5—C10	-19.3 (2)	C9—N6—C11—C10	0.5 (4)				
C2—N1—C1—N2	-0.4 (3)	C12—N6—C11—C10	-176.8 (3)				
Co1—N1—C1—N2	-178.95 (16)						
Symmetry codes: (i) $-x+1, -y+1, -z+1$.							

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$
O1W—H1WA…Br1 ⁱⁱ	0.85	2.57	3.371 (3)	157
O1W—H1WB…Br1	0.86	2.51	3.338 (3)	164
Symmetry codes: (ii) $-x+1, -y+2, -z+1$.				

